
Jochen Hanebeck

CEO

Source: Homepage Infineon

Nerds Only 08.2023

Board ESP8266

Source: Espressif

GIMP

GIMP originally stands for General Image Manipulation Program, and first version was developed

1995 by Spencer Kimball and Peter Mattis as a semester-long project at the University of California,

Berkley. Two year later they met Richard Stallman of the GNU project while he visited UC Berkley and

asked if they could change ‘General’ in the application's name to ‘GNU’ (the name of the operating

system created by Stallman), and Stallman approved.

GIMP's mascot is called Wilber and was created in GIMP by Tuomas Kuosmanen, known as tigert, on

25 September 1997.

The GNU mascot is a anthropomorphic wildebeest head, but has no name.

Source:
https://en.wikipedia.org/wiki/GIMP

https://en.wikipedia.org/wiki/GNU_Project

Project

Alarm Clock

We will program RoboMaster as an alarm clock:

- Get real time from internet

- Set alarm time with smartphone (HTML)

- Set alarm on / off by smartphone (HTML)

Use the left up/down buttons to set the hour of alarm time, and the right up/down buttons to set

the minutes.

With the ALARM button you can switch the alarm on, status indicated by the letter A. If you switch of

(tap button again), the letter A will disappear.

The projects is realized in five steps:

1.- WLAN – Basics

Show local IP on display

2.- WLAN – Basics & HTML

Show local IP on Webpage (Browser on Smartphone)

3.- Internet time

Show actual time on display and HTML

4.- Set Alarm Time

Show alarm time on Display and HTML, Modify hh and mm with buttons

5.- Realize Alarm Clock Funktion

Implement alarm clock logic, with optical and acoustical alarm

In this Update we will do the the first two steps

1.- WLAN – Basics

(SSID, Password, local IP)

Show local IP on display

Introduction

The SSID ist the name of WLAN, in my case MOVISTAR_EF37. To enter WLAN you need password, in

my case 981675525.

With WiFi.begin(ssid, password) you send an request from your ESP8266 to your WLAN router, for

access. If SSID and Pswd is correct, the router agrees and will assign an IP address to your device. To

show the IP address on your display: lcd.print(WiFi.localIP());

This takes about 4 seconds.

If ssid and/or pswd is wrong, you will get (IP unset) or just stay in the loop while (WiFi.status() !=

WL_CONNECTED).

WiFi.begin(ssid, password) Access to router, router provides IP address

while (WiFi.status() != WL_CONNECTED) { } Wait, until connected to router

lcd.print(WiFi.localIP()) Print the assigned IP address on LCD display

Library
ESP8266WiFi library — ESP8266 Arduino Core documentation (arduino-esp8266.readthedocs.io)

C:\Users\Timo\Documents\ArduinoData\packages\esp8266\hardware\esp8266\3.0.1\libraries

Code
#include <LiquidCrystal_I2C.h>
#include <ESP8266WiFi.h>

const char* ssid = "MOVISTAR_EF37"; //Your Network SSID
const char* password = "981675525"; //Your Network Password

// Set the LCD address to 0x27 for a 16 chars and 2 line display
LiquidCrystal_I2C lcd(0x27, 16, 2);

void setup() {

 // initialize the LCD
 lcd.begin();

 // Turn on the blacklight and print a message: Wait for IP address
 lcd.backlight();
 lcd.setCursor(0, 0); // Spalte, Zeile
 lcd.print("Connecting");

 // Connect to WiFi network
 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED)
 {
 delay(500);
 lcd.print(".");
 }

 // print a IP address.
 lcd.setCursor(0, 0); // Spalte, Zeile
 lcd.print(" ");
 lcd.setCursor(0, 0); // Spalte, Zeile
 lcd.print(WiFi.localIP());

}

void loop() {
 // do nothing
}

Try it yourself

1.) Try Code with your own SSID and Password. Which IP address you get?

2.) Modify code: Substitute the while statement by a simple delay(). Try different delay times.

What is the minimum delay you need to get a valid IP address on your display? What

message do you get on your display, when the delay is to short?

2.- WLAN – Basics & HTML

(AsyncWebServer, Client, Server)

Show local IP on Webpage (Browser on Smartphone)

Introduction

AsyncWebServer

First you need to set up an AsyncWebServer. An AsyncWeb Server is a very robust server concept,

that can handle requests at any time. In this case you send a request via the browser (client) of our

smartphone with the IP address (just type in the browser the assigned IP address (in my case

192.168.1.125, equal to 192.168.1.125/). This is understood as request for root (“/”) or homepage

wich than will be send as a request.

#include <ESPAsyncWebServer.h>
AsyncWebServer server(80);

Setup AsyncServer

server.on("/", [](AsyncWebServerRequest * request)
 {
 request->send_P(200, "text/html", webpage);
 });

On request for root (“/”)
send webpage

HTML Page

A separate file named html.h contains the HTML Code with the content and design of the Web-Page,

which will be displayed on your smartphone as a response to your request. Again once you type in

your browser the IP address (in my case 192.168.1.125) and press ENTER you send the request.

The code has a basic structure:

char webpage[] PROGMEM = R"=====(

HTML Code

)=====";

Store the HTML Code in the
variable webpage

And the HTML Code build from 3 blocks:

<!DOCTYPE html>
<html>

HTML Begin

 <head>
 </head>

Header appears as Window
title in Browser

 <style>
 </style>

Style, like colors

 <body>

 </body>

Headers and Paragraphs.
Here is basically the content
of the webpage.

</html> HTML End

Library
ESP8266WiFi library — ESP8266 Arduino Core documentation (arduino-esp8266.readthedocs.io)

C:\Users\Timo\Documents\ArduinoData\packages\esp8266\hardware\esp8266\3.0.1\libraries

Code
#include <LiquidCrystal_I2C.h>

// Set the LCD address to 0x27 for a 16 chars and 2 line display
LiquidCrystal_I2C lcd(0x27, 16, 2);

// Librarys for WiFi
#include <ESP8266WiFi.h>;
#include <WiFiClient.h>;

#include <ESP8266mDNS.h>

// Include my own html page
#include "html.h"

const char* ssid = "MOVISTAR_EF37"; //Your Network SSID
const char* password = "981675525"; //Your Network Password

WiFiClient client;

#include <ESPAsyncWebServer.h>
AsyncWebServer server(80); // server port 80

void notFound(AsyncWebServerRequest *request)
{
 request->send(404, "text/plain", "Page Not found");
}

void setup()
{
 // initialize the LCD

lcd.begin();

 // Turn on the blacklight and print a message.
 lcd.backlight();
 lcd.setCursor(0, 0); // Spalte, Zeile
 lcd.print("Connecting");

 // Connect to WiFi network
 WiFi.mode(WIFI_STA);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED)
 {
 delay(500);
 lcd.print(".");
 }

 // Print local IP on Display
 lcd.setCursor(0, 0); // Spalte, Zeile
 lcd.print(" ");
 lcd.setCursor(0, 0);
 lcd.print(WiFi.localIP());

 // (1) Page for /
 server.on("/", [](AsyncWebServerRequest * request)
 {
 request->send_P(200, "text/html", webpage);
 });

 server.onNotFound(notFound);

 server.begin(); // it will start webserver

}

void loop()
{

// do nothing

}

HTML Code (html.h)
//HTML code---------------------
char webpage[] PROGMEM = R"=====(
<!DOCTYPE html>
<html>
<head>

 <title>A L A R M Clock</title>
</head>

<!--HTML body formatting-->
<style>

 body {font-family: "Arial"; background-color: lightblue}
 h1 {color: blue; text-align:center; font-size: 80px}

 h2 {color: black; font-size: 50px}
 h3 {color: red; text-align:center; font-size: 20px}

</style>
<!--end of formatting-->

<body>
<h1>

 A L A R M

 Clock

 </h1>
<h2>

 <center>

 <img src="https://nerdsacademy.de/wp-
content/uploads/2023/08/ArlamClockWhite.png" width = 40% >

 </center>

 <a>System data:

<p id="demo"></p>
<p id="demo2"></p>

<script>
let host = location.host;
let host2 = 'IP address: '+host;
document.getElementById("demo2").innerHTML = host2;
</script>

</h2>
</body>
</html>
)=====";

Exercise

1.) There are two symbols for alarm clock: AlarmClockBlack and AlarmClockWhite. Modify the

code that instead of the black the white one is used.

2.) Change background color from lightblue to red.

Extra

Modify foto to black&white with GIMP

Introduction

Gimp is a free software used for image editing. It’s a raster graphis editor, means pictures are pixel

based (dot by dot). You can use it to modify fotos to simpler black/grey/white fotos.

 

Copy to clipboard
Delete original picture
Paste content of clipboard
Result is picture 2

Cut the head

Farben>Entsättigen>Entsättigen

Farben>Helligkeit/Kontrast
Result is picture 3

Transform to black & white
with high contrast

click with the magic wand outside the head on the background

a) Then Auswahl>Invertieren
Copy to clipboard. Paste in a other application
or

b)
Datei>Exportieren nach
store as .PNG file

Store as .PNG file

Links
https://www.chip.de/downloads/GIMP_12992070.html

Description

To use the picture in my projects I store it on my own homepage:

https://nerdsacademy.de/wp-content/uploads/2023/08/Ronaldo.png

Try yourself!

1.) Take a picture of your own (best with sunglasses). Modify it to black&white.

2.) Create a new code, which creates a a HTML page from your RonboMaster: Titel, your

personal maxim, your picture.

3D Printing

Description

3 identicle parts that slide together in a satisfying way to create a cube. Once assembled it needs to

be held and moved in a specific direction to seperate. Cube size at default scale is 45mm.

Source

Thingiverse: https://www.thingiverse.com/thing:2975065

Printables: https://www.printables.com/de/model/338890-puzzle-cube-easy-print-no-support

Ich habe es über Printables heruntergeladen.

Exercise

1.) Print the standard version and find solution to mount it.

2.) Print a smaller version (e.g. 30 instead of 45 mm), and try again

Contact:

nerdsonly.de/kontakt/

Disclaimer

Safety Awareness: The content on this website is intended for educational purposes. Users should exercise caution and

follow safety guidelines when engaging in electronic and 3D print projects to avoid potential risks.

Accuracy Disclaimer: While we strive for accuracy, the information and projects provided may change and might not

always be up-to-date. Users should verify information before relying on it.

Liability Limitation: We are not responsible for any injuries, damages, or losses resulting from the use of information,

projects, or materials provided on this website. This includes damages related to personal injury, property damage, data

loss, or profits.

External Links: Links to external websites are not endorsements, and we are not accountable for the content or accuracy

of those sites.

Intellectual Property: The intellectual property rights of projects and content belong to respective owners. Users can use

the information for personal, non-commercial purposes, but commercial use requires explicit permission.

